5,519 research outputs found

    Libelle Self-Contained Anti-G Ensemble: Overcoming Negative Transfer

    Get PDF
    G-suits have changed over the years since Dr. Wilbur Franks invented the first anti-g suit. For the past decade the United States Air Force has been using the Combat Edge ensemble and the associated L-1 straining maneuver. The Air Force is now testing the Libelle Self-contained Anti-G Ensemble (SAGE); it uses a unique Libelle Straining Maneuver (LSM). The suit and the straining maneuver were determined to be valid; however, the effects of negative transfer must be addressed or it will have a significant impact on the success of this program

    Observation of NO(x) Enhancement and Ozone Depletion in the Northern and Southern hemispheres after the October-November 2003 Solar Proton Events

    Get PDF
    The large solar storms in October-November 2003 produced enormous solar proton events (SPEs) where high energetic particles reached the Earth and penetrated into the middle atmosphere in the polar regions. At this time, the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) was observing the atmosphere in the 6-68 km altitude range. MIPAS observations of NO(x) (NO+NO2) and O3 of the period from 25 October to 14 November 2003 are the first global measurements of NO(x) species, covering both the summer (daylight) and winter (dark) polar regions during an SPE. Very large values of NO(x) in the upper stratosphere of 180 ppbv (parts per billion by volume) have been measured, and a large asymmetry in Northern and Southern polar cap NO(x) enhancements was found. Arctic mean polar cap (>60 deg) NO(x) enhancements of 20 to 70 ppbv between 40 to 60 km lasted for at least two weeks, while the Antarctic mean NO(x) enhancement was between 10 and 35 ppbv and was halved after two weeks. Ozone shows depletion signatures associated with both HO(x) (H+OH+HO2) and NO(x) enhancements but at different time scales. Arctic lower mesospheric (upper stratospheric) ozone is reduced by 50-70% (30-40%) for about two weeks The large solar storms in October-November 2003 produced after the SPEs. A smaller ozone depletion signal was observed in the Antarctic atmosphere. After the locally produced Arctic middle and upper stratospheric as well as mesospheric NO(x) enhancement, large amounts of NO(x) were observed until the end of December. These are explained by downward transport processes

    The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.)

    Get PDF
    The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway

    Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B

    Full text link
    The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand radiation levels which are similar to LHC conditions. The first prototypes exposed to radiation in HERA-B suffered severe radiation damage due to the development of self-sustaining currents (Malter effect). In a subsequent extended R&D program major changes to the original concept for the drift tubes (surface conductivity, drift gas, production materials) have been developed and validated for use in harsh radiation environments. In the test program various aging effects (like Malter currents, gain loss due to anode aging and etching of the anode gold surface) have been observed and cures by tuning of operation parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001, Hamburg, German

    From the cell membrane to the nucleus: unearthing transport mechanisms for Dynein

    Get PDF
    Mutations in the motor protein cytoplasmic dynein have been found to cause Charcot-Marie-Tooth disease, spinal muscular atrophy, and severe intellectual disabilities in humans. In mouse models, neurodegeneration is observed. We sought to develop a novel model which could incorporate the effects of mutations on distance travelled and velocity. A mechanical model for the dynein mediated transport of endosomes is derived from first principles and solved numerically. The effects of variations in model parameter values are analysed to find those that have a significant impact on velocity and distance travelled. The model successfully describes the processivity of dynein and matches qualitatively the velocity profiles observed in experiments

    Operational experience with the GEM detector assembly lines for the CMS forward muon upgrade

    Get PDF
    The CMS Collaboration has been developing large-area triple-gas electron multiplier (GEM) detectors to be installed in the muon Endcap regions of the CMS experiment in 2019 to maintain forward muon trigger and tracking performance at the High-Luminosity upgrade of the Large Hadron Collider (LHC); 10 preproduction detectors were built at CERN to commission the first assembly line and the quality controls (QCs). These were installed in the CMS detector in early 2017 and participated in the 2017 LHC run. The collaboration has prepared several additional assembly and QC lines for distributed mass production of 160 GEM detectors at various sites worldwide. In 2017, these additional production sites have optimized construction techniques and QC procedures and validated them against common specifications by constructing additional preproduction detectors. Using the specific experience from one production site as an example, we discuss how the QCs make use of independent hardware and trained personnel to ensure fast and reliable production. Preliminary results on the construction status of CMS GEM detectors are presented with details of the assembly sites involvement

    Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System

    Full text link
    Gas Electron Multiplier (GEM) technology is being considered for the forward muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first implementation is planned for the GE1/1 system in the 1.5<η<2.21.5 < \mid\eta\mid < 2.2 region of the muon endcap mainly to control muon level-1 trigger rates after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by 3,072 radial strips with 455 μ\murad pitch arranged in eight η\eta-sectors. We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO2_{2} 70:30 and the RD51 scalable readout system. Four small GEM detectors with 2-D readout and an average measured azimuthal resolution of 36 μ\murad provided precise reference tracks. Construction of this largest GEM detector built to-date is described. Strip cluster parameters, detection efficiency, and spatial resolution are studied with position and high voltage scans. The plateau detection efficiency is [97.1 ±\pm 0.2 (stat)]\%. The azimuthal resolution is found to be [123.5 ±\pm 1.6 (stat)] μ\murad when operating in the center of the efficiency plateau and using full pulse height information. The resolution can be slightly improved by \sim 10 μ\murad when correcting for the bias due to discrete readout strips. The CMS upgrade design calls for readout electronics with binary hit output. When strip clusters are formed correspondingly without charge-weighting and with fixed hit thresholds, a position resolution of [136.8 ±\pm 2.5 stat] μ\murad is measured, consistent with the expected resolution of strip-pitch/12\sqrt{12} = 131.3 μ\murad. Other η\eta-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci. Symposium, Seattle, WA, reference adde

    Quality control and beam test of GEM detectors for future upgrades of the CMS muon high rate region at the LHC

    Get PDF
    Gas Electron Multipliers (GEM) are a proven position sensitive gas detector technology which nowadays is becoming more widely used in High Energy Physics. GEMs offer an excellent spatial resolution and a high particle rate capability, with a close to 100% detection efficiency. In view of the high luminosity phase of the CERN Large Hadron Collider, these aforementioned features make GEMs suitable candidates for the future upgrades of the Compact Muon Solenoid (CMS) detector. In particular, the CMS GEM Collaboration proposes to cover the high-eta region of the muon system with large-area triple-GEM detectors, which have the ability to provide robust and redundant tracking and triggering functions. In this contribution, after a general introduction and overview of the project, the construction of full-size trapezoidal triple-GEM prototypes will be described in more detail. The procedures for the quality control of the GEM foils, including gain uniformity measurements with an x-ray source will be presented. In the past few years, several CMS triple-GEM prototype detectors were operated with test beams at the CERN SPS. The results of these test beam campaigns will be summarised
    corecore